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A B S T R A C T

Assessing the impact of climate change on floodplain productivity poses unique challenges for hydrodynamic
models. For example, the dynamics of floodplain fisheries are governed both by inundation dynamics across
thousands of km2, and water storage timing within small depressions (which serve as fish habitat) connected to
the river network by meter-scale manmade canals, controlled by flow across fishing weirs. Here, we propose to
represent these features as a system of effective, interconnected sub-grid elements within a coarse-scale model.
We test this strategy over the Logone floodplain in Cameroon, and its floodplain fishery. We first validate this
strategy for a local study area (30 km2); we find that hydraulic models at resolutions from 30 m to 500 m are able
to reproduce hydraulic dynamics as documented by in situ water level observations. When applied to the entire
floodplain (16,000 km2), we find that the proposed modeling strategy allows accurate prediction of observed
pattern of recession in the depressions. Artificially removing floodplain canals in the model causes residence
time of water in depressions to be overpredicted by approximately 30 days. This study supports the strategy of
modeling fine-scale interconnected features as a system of sub-grid elements in a coarse resolution model for
applications such as assessing the sensitivity of floodplain fisheries to future climate change.

1. Introduction

Predicting and modeling flood extent and timing is vital to under-
standing the dynamics of floodplain fish and fisheries (Thompson and
Polet, 2000; Welcomme and Hagborg, 1977). Floodplain fish have
evolved to flooding seasonality and their populations are driven by both

flood and dry season duration, timing and magnitude. Depending on
the location and season, floodplain fisheries employ various techniques
to catch fish. Some techniques, like the use of fish canals, alter the
drainage system, impacting flood extent, and timing of onset and re-
cession of floods, which in turn affect the fish population and pro-
ductivity (Delclaux et al., 2011; Laborde et al., 2016; Moritz et al.,
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2016). Future climate change is expected to produce changes in rainfall
patterns and flows in river channels, which will also impact floodplain
dynamics. In order to study the effects of floodplain fisheries and cli-
mate change on floodplain dynamics, researchers have turned to hy-
drodynamic models.

Hydrodynamic models are used to study complex links between
hydrologic systems and social-ecological systems (Bockelmann et al.,
2004; Casas-Mulet et al., 2014; DeVries et al., 2012; García et al., 2011;
Nislow et al., 2002), and the impacts of climate change (Hirabayashi
et al., 2013; O’Neill and Hulme, 2009). Hydrodynamic models predict
the extent and timing of floods, and hence providing means to estimate
some of the most critical parameters governing fish population in
floodplain fisheries (Welcomme and Hagborg, 1977). Neal et al. (2012)
introduced “sub-grid modeling”, a strategy to systematically include
and parameterize the effects of river channels smaller than the model
grid scale in two-dimensional hydraulic models, a strategy that has
opened the door to new applications (Kennedy et al., 2019; Komi et al.,
2017; Schumann et al., 2016, 2013; Wing et al., 2017; Wood et al.,
2016; Yamazaki et al., 2011). The need to estimate fish productivity
and population for floodplain fisheries applications represent novel
challenges to existing approaches, however.

In order for hydraulic models to be useful in the context of under-
standing floodplain fisheries, they will have to account for an inter-
connected system of elements functioning at sub-grid spatial scales.
Natural floodplain depressions store water on floodplains, and provide
habitat for fish to grow. Meter-scale, manmade canals link depressions
and the river network, and provide means to harvest fish at the end of
the season; weirs and fishnets are often installed on these canals, and
modulate flow during recession. Such features are typically ignored in
conventional hydrologic and hydrodynamic model simulations

(Fernández et al., 2016; Rajib et al., 2019). Sub-grid modeling provides
the means of representing such features within a larger-scale model
(Neal et al., 2012) that has primarily been used to represent small river
channels must be adapted to represent this entire floodplain-depres-
sion-canal-river system of interconnected sub-grid features.

The objective of this paper is to describe and evaluate a strategy for
hydrodynamic modeling that can be coupled with a canal-fishery
model. We propose the following adaptations to traditional sub-grid
modeling: i) We aggregate multiple fish canals and multiple depressions
into a single effective model element to be represented as a sub-grid
feature. ii) We treat depression storage as a sub-grid element, as well as
the fish canals, thus creating an interconnected network of multiple
types of sub-grid features. iii) We propose a strategy for modeling
fishnet structures as weirs, as described below. Taken together, these
approaches represent a distinct and novel strategy in hydraulic mod-
eling.

We test this modeling approach in the Logone Floodplain in the Far
North Region of Cameroon. We work from a previous study in this area
that reproduced large-scale floodplain dynamics, but ignored fish ca-
nals and other small-scale processes important to hydraulic con-
nectivity and fisheries (Fernández et al., 2016). We assess sub-grid
modeling with a two-part strategy. First, we study a single depression
with multiple canals over a 30 km2 area, and explore whether our
strategy successfully captures observed water level dynamics as we vary
the model spatial scale. Secondly we investigate whether a coarse scale
(500 m) model of the entire floodplain (16,000 km2) is capable of re-
producing inundation dynamics within floodplain depressions, which
are sensitive to the presence of canals as demonstrated by Laborde et al.
(2016). If demonstrated to adequately capture both local and floodplain
scale dynamics, the sub-grid modeling approach will pave the way to

Fig. 1. Study Area showing the Digital Elevation Model (DEM) of the Logone Floodplain and the entire watershed, including the river network, in situ gaging stations
and fish canals.
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couple hydrodynamic and fisheries models to study the impacts of the
same small-scale features on fisheries. This type of modeling approach
enhances our capacity to quantify and understand the effect of small
canals in floodplains and flood-prone areas.

2. Study area

2.1. Geography, hydrology and hydraulics

The Logone Floodplain, also known as Yaayre, covers about
16,000 km2 (Delclaux et al., 2011), and is located in the Far North
Region of Cameroon. It supports a large number of people with a po-
pulation of about 200,000 (Laborde et al., 2016; Mitchell, 2013). The
floodplain is a part of Lake Chad basin and contains the Waza National
Park (1700 km2) and Kalamaloue National Park (48 km2). The flood-
plain is highly productive, and acts as breeding grounds for fish when
inundated, and provides dry season pastures that support cattle and
other livestock and fertile land for growing rice.

The Logone Floodplain is a small part of the Logone watershed and
is located at the downstream part of the Logone River (Fig. 1). The
floodplain has semi-arid climate, while the rest of the watershed has
tropical wet and dry (Savannah) climate (Murumkar et al., 2020). The
floodplain has mean annual rainfall of about 700 mm; the upstream
part of the watershed receives about 1200 mm annually (Evans and
Loth, 2004a, 2004b; Murumkar et al., 2020). The first rainfall on the
floodplain, generally in June/July, plays an important role by satur-
ating the dry clayey soil, and overbank flow from Logone, Logomatya
and Lorome Mazra river channels floods the region in September/Oc-
tober. The region is inundated for about three to four months (Delclaux
et al., 2011; Jung et al., 2011). Local rainfall has less control over
flooding than the flow in the Logone; overbank flow is the biggest
contributor to the inundation of the floodplain (Evans and Loth,
2004a). Because the area is relatively flat, the flood spreads over a large
area of about 8000 km2 (Delclaux et al., 2010) before it drains back to
the Logone and the El Beid River in the north. The floodplain also ex-
periences significant evapotranspiration throughout the year. Naah
(1990) used piché evaporimeters and estimated the annual potential
evaporation rate between 2700 mm and 3000 mm on the floodplain.
However, it is important to note that maximum potential evaporation
occurs between February and April when the floodplain is dry.

In the past decades, human activities have significantly modified
floodplain dynamics. As a part of a large agricultural project, SEMRY II,
for irrigated cultivation of rice, the Cameroonian government con-
structed a dam on the Logone in 1979, which created a 400 km2 re-
servoir (Lake Maga, Fig. 1) upstream of the floodplain (Loth, 2004). As
a result of this, the flooding in the floodplain reduced by about 30%
(Delclaux et al., 2010), which had a negative impact on the ecological
and social systems in the floodplain (Loth, 2004; Scholte, 2005).

2.2. Canal fisheries

Fishing is an important regional livelihood on the Logone
Floodplain (Delclaux et al., 2011; Laborde et al., 2016; Landolt, 2010;
Loth, 2004). Fishing techniques used include fish traps, cast nets, gill
nets, hooks and lines, grass fishing. Over the last half century, fish ca-
nals have gained popularity and their numbers have increased ex-
ponentially (Delclaux et al., 2011; Laborde et al., 2016).

Fish canals are man-made channels connecting the river to natural
depressions in the terrain, which act as seasonal ponds (Fig. 2). Fishers
dig new fish canals and maintain the old ones by removing the de-
posited sediments from the previous flood. These canals are used during
flood recession to drain floodwater and channel fish moving off the
floodplain through fishnets (Fig. 2(a)). The technique is effective be-
cause the fish canals can drain high volumes of water during the period
of highest fish densities. Fig. 2(b) shows a photograph of a fish canal in
the dry season, and Fig. 2(c) shows a photograph of an installed fishnet

in a fish canal.
In the dry season, water is generally restricted to the rivers (see

Fig. 1), Lake Maga and a few natural depressions. Floodwaters bring
fish onto the floodplain; the inundated floodplain and natural depres-
sions act as feeding and breeding grounds for fish. Fish population
dynamics are driven by flooding patterns. The onset of flooding is ty-
pically when fish spawn, and the inundated floodplain provides a
productive habitat for their primary growth period. Fish mortality is
highest in the dry season when water volume is low because of high
temperatures and low oxygen. Fish population biomass follows a
‘boom-and-bust’ pattern similar to floodplain water volume.

Floodplain fish production is driven by flooding patterns.
Production has a positive relationship with flood magnitude and a ne-
gative relationship with dry season severity. Additionally, flood timing
and aquatic habitat connectivity are also important variables in
spawning and survival success. Understanding spatial and temporal
patterns in flooding is necessary to evaluate the availability of a key
natural resource for regional livelihoods.

However, fish canals connect the floodplain to the river and act as a
hydraulic extension of the river drainage network. Increasing use of fish
canals could potentially have effects on the flood dynamics with a
change in inundation patterns or the timing of onset and recession of
flooding. Our objective was to build a hydrodynamic model that cap-
tures the effect of these small-scale features, i.e. fish canals and fishnets,
on flood inundation dynamics locally in the depressions and globally in
the whole floodplain system.

3. Methods and data

3.1. Hydrodynamic modeling of the Logone floodplain

We used LISFLOOD-FP model to simulate hydrodynamic processes
in rivers, floodplain, and fish canals. LISFLOOD-FP is a grid-based hy-
draulic model with one-dimensional channel representation and two-
dimensional floodplain representation based on a simplification of the
shallow water equations (Bates et al., 2010; Bates and De Roo, 2000). It
can represent small channels using a sub-grid scale parametrization of
the channels' geometry and friction (Neal et al., 2012), where the
channel is represented on a sub-grid scale by using parameters to re-
present channel geometry and friction. With sub-grid parametrization,
rivers with widths smaller than the spatial resolution of the DEM can be
simulated efficiently, and a separate 1D channel model is not necessary
(Neal et al., 2012; Schumann et al., 2014a, 2014b). Simplified versions
of the shallow water equations are then solved in the sub-grid channel
and floodplain grid cell simultaneously. LISFLOOD-FP has been used to
simulate inundation patterns for specific flood events (Bates et al.,
2005; Neal et al., 2011) and to study long-term floodplain dynamics
(Rudorff et al., 2014a, 2014b; Schumann et al., 2013), among other
applications.

Using LISFLOOD-FP, we build hydrodynamic models at the Bara
Depression (details in section 3.2), and of the larger Logone Floodplain
(details in section 3.3 below). We build the Bara model at 30 m re-
solution to capture small-scale processes, and upscale it to 500 m while
preserving the effects of these small-scale features. We then build a
model of the Logone Floodplain at 500 m resolution to examine the
effects of the small-scale processes on the larger system.

We introduce a new feature in LISFLOOD-FP to represent the fishnet
structure, which is modeled as a combination of a weir and trash-
screen. This feature is specially included for this application, and is not
available in the standard version of LISFLOOD-FP. Fig. 2(c) shows a
photograph of a fishnet in operation, and consists of sandbags to ob-
struct the flow which we represent as the weir, and a mesh made from
twigs and leaves which we represent as the trash-screen. Water drop
across the fishnet (Fig. 2(c)) is captured as a loss due to expansion and
contraction of the flow area in the weir, caused by the acceleration of
flow through the structure (Balkham et al., 2010). Equations (1), (2)
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and Fig. 3 show the mathematical representation of this structure:

= + + −h z y h y( )s w w ex d (1)

where hs is the afflux of weir flow, zw is the height of weir crest, yw is the
depth of weir flow over crest, hex is head loss due to contraction and yd
the downstream water depth.

=Q C B y'w w
3/2 (2)

where Q is the discharge in m3/s, Cw is the discharge coefficient for weir
flow (typically between 1.4 and 1.7) and B’ is the effective width at the
screen (B’=width*screen coefficient).

3.2. Modeling approach: Bara

The Bara region is a small area of about 30 km2 in the Logone
Floodplain that we studied for understanding flooding dynamics. The
site consists of a river channel, a depression of ~1.1 km2, and nine fish

canals that connect them. Lorome Mazra, the river channel in Bara,
flows from South to North. To study the effects of fish canals and
fishnets, we built a hydraulic model of Bara at a resolution of 30 m
where each fish canal is individually represented, i.e., every fish canal is
represented as a unique sub-grid channel. To quantify the impact of
small-scale, local features captured in a coarser model, we also built a
hydraulic model of the same Bara site at a resolution of 500 m.

3.2.1. Field data
In the dry season of 2015, we surveyed the Bara depression using

auto-levels to obtain the relative elevation profile of the depression.
First, we established a reference point and recorded the location and
ground elevation of this point using a GPS. Then, we recorded the lo-
cations and elevations of 97 sample points relative to the reference
point using an auto-level. We performed ordinary kriging on this da-
taset to interpolate depression elevations at 30 m resolution. Fig. 4(a)
shows the locations where we collected data, and the final product after
ordinary kriging. We created a synthetic digital elevation model (DEM)
of the region outside of the depression (Fig. 4(b)) by assuming that the
floodplain has a slope of 10 cm/km from south-to-north, as obtained
from Shuttle Radar Topography Mission (SRTM) DEM as the mean slope
along the entire floodplain. The interpolated data was burnt into the
DEM to represent the depression.

In the summer of 2016, we surveyed all the fish canals in the Bara
region and measured their width and depth at 50 m intervals. This data
gave us information about the longitudinal and cross-sectional profiles
of all the fish canals in Bara region. We used this data to parametrize
the width and depth of all fish canals in this region.

We collected water depth measurements during the flood recession
in all the representative features of the terrain (floodplain, depression,
fish canal and river channel) (Laborde et al., 2018), to understand the
coupling among them. A staff gage was installed in two locations for
each feature, water depth was recorded in each location twice daily.
Fig. 4(b) shows the locations of these measurements. Water depth
measurements were recorded for eleven days between 8 and 22

Fig. 2. Fish canals in the Logone Floodplain. (a) Schematic of flood recession process; black arrows represent the direction of flood recession to the river, blue cross
represents the fish canals. (b) Photograph of a fish canal in the dry season. (c) Photograph of a working fishnet (ACEEN).

Fig. 3. Simple representation of the fishnet structure, showing the weir and the
screen.
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November 2014 (no measurements between 13 and 16 November
2014). Daily mean water depth was obtained from the collected data,
and the observed depth anomaly was used to evaluate the performance
of the Bara model.

3.2.2. Parametrization of river channel, fish canals and fishnets
Bathymetry data was not available for the Lorome Mazra River, so

we approximated channel geometry using remote sensing data. We used
a 2009 satellite imagery from WorldView-1, which has a spatial re-
solution of 50 cm, to estimate the width of Lorome Mazra to be 25 m.
From the field data collected in 2014, the mean depth of fish canals
along Lorome Mazra was 1.3 m with the range between 0.1 m and
2.8 m. The depth of the river channel has to be greater than the depth of
fish canals. Using this and the knowledge of field experts, we assumed
the depth of Lorome Mazra to be 3 m, with an embankment of 60 cm
height along the river.

In the 30 m model, the nine fish canals were represented as in-
dividual features. From the field data collected in 2016, we found that
the mean width of the fish canals was 3 m and the mean depth of the
canals near their start at the depression was 20 cm. The canal bed
sloped from the depression towards the river channel, with a mean bed
slope of 60 cm/km.

We built the coarse resolution (500 m) model similar to the fine
resolution Bara model. The river channel was represented as a sub-grid
channel 25 m wide and 3 m deep. The fish canals were also represented
as sub-grid channels, as in the 30 m model. However, each fish canal
could not be represented individually, as multiple canals fell within a
500 m grid cell. If there was more than one fish canal in a grid cell, all
the canals were aggregated such that the storage capacity of the ag-
gregated fish canal was the same as the total storage capacity of all the
fish canals falling in the grid cell. The width of the aggregated canal was
calculated as the sum of average width of all the canals falling in a grid
cell. A uniform depth of 0.5 m was assumed. An aggregated canal
generally consists of 1 or 2 grid cells, so it wasn’t feasible to define a bed
slope gradient. The aggregated length was calculated by dividing the
storage capacity of the 30 m model by width and depth of fish canals.
The depression was also represented as a sub-grid feature, which pre-
served the volume of water stored in the depression from the fine re-
solution formulation. The depth of the depression was assumed to be
uniform, as 0.5 m (mean depth of depression in the fine resolution
model), and the length was calculated given the width of the cell was

500 m.
The fishnet used to capture fish works by channeling water flow in

the canal through a small orifice which has a net attached. Sandbags are
used to obstruct the flow. The mesh above the sand bags force the fish
to move and be caught in the fishnet (Fig. 2(c)). In LISFLOOD-FP, we
represented this feature as a combination of a weir and trash screen.
Photographs collected during field data collection were used to ap-
proximate the width of the weir, which represented the orifice to which
the fishnet was attached, and the crest height of the weir, which re-
presented the depth of sandbags. We used field photographs to estimate
the weir width as 0.5 m (1/6th times the average width of the fish
canal) and crest height as 30 cm. A trash screen coefficient was used to
allow a portion of water to flow through the screen. We calibrated its
coefficient value to produce the desired water drop across the fishnet
and found that a trash screen coefficient of 0.8 produced a describable
water drop across the fishnet of about 20 cm (ascertained from field
photographs and knowledge of field experts).

3.2.3. Boundary conditions
There are no streamflow gages on the Lorome Mazra River, and

hence, direct discharge observations were not available to set up this
model. We obtained the upstream channel flow for the model from the
Logone Model in Fernández et al. (2016). Bara is inundated each year
from the overbank flow from the Lorome Mazra River, and the flood
wave slowly moving from south to north in the floodplain. To represent
the flood wave, we calibrated a time-varying water elevation boundary
condition along the South boundary, as described in the following
section. We used monthly open water evaporation rates from Naah
(1990). We assumed that all precipitation was either infiltrated (before
soil saturation) or evaporated, and did not include precipitation in the
model (Fernández et al., 2018).

3.2.4. Calibration of the Bara model
We used the water level data collected during the flood recession of

2014 to understand the flood recession dynamics and we set up the Bara
model with boundary conditions to recreate the same. A flow along the
south boundary accounted for the flood wave moving into the Bara
region from upstream. The depth of water entering along the south
boundary was represented as a height boundary condition. We assumed
that the floodplain was inundated for three months (Delclaux et al.,
2011). Since we used a “semi-synthetic” DEM to build the Bara model,

Fig. 4. Topography of Bara depression. (a) Locations at which data was collected during depression survey, and its spatial interpolation. (b) Interpolated depression
burnt into a synthetic topography.
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we needed a credible way to represent the flood wave flowing from
south to north. We calibrated the depth of water entering the domain
along the south boundary, and the onset of flood recession at Bara. The
maximum flood depth (60 cm) and the timing of onset of recession (5
November 2001) were calibrated such that depth anomalies in the
model for all the features (floodplain, depression, and fish canals) were
similar to those observed in the field data.

3.3. Modeling approach: Logone floodplain

We built the large scale Logone model similar to the coarse re-
solution Bara model using LISFLOOD-FP, and quantified the effects of
fish canals on the depressions by implementing a “no-canal” simulation.
The model was simulated for a period of 7 years between 2001 and
2007. The details are described below.

3.3.1. Topographic data
Accurate topographic information is crucial for predicting flood

inundation using hydrodynamic models. Airborne light detection and
ranging (LiDAR) DEMs offer the best horizontal resolution and vertical
accuracy. However, high resolution LiDAR DEMs are not available in
the Logone Floodplain. The best available DEMs in this region were
obtained from satellite data. SRTM DEMs are available globally at a
spatial resolution of 30 m; random error in their elevation accuracy in
sub-Saharan Africa is ~±2 m (Rodriguez et al., 2006), comparable to
the flood depth in the Logone Floodplain (Delclaux et al., 2011). Hence,
modeling with SRTM will produce spatial inconsistencies in inundation
predictions (Fernández et al., 2016). The Multi-Error-Removed Im-
proved-Terrain (MERIT) DEM (Yamazaki et al., 2017) was produced by
removing multiple errors from existing globally available DEMs, and we
used MERIT DEM in the present study. In the Logone Floodplain, ab-
solute bias, stripe noise, speckle noise, and tree height bias were re-
moved from SRTM DEM to get the MERIT DEM (Yamazaki et al., 2017).

We chose a coarse resolution (500 m) in order for the model to
mimic spatial resolutions likely to be used when requiring computa-
tionally efficient simulations across future climate scenarios.
Simulation at 500 m resolution allowed us to capture more of the de-
pressions used for floodplain fisheries and was computationally more
tractable than the 250 m resolution. Note that Fernández et al. (2016)
found that 250 m, 500 m and 1000 m model simulations produced si-
milar overall skill in reproducing inundation dynamics over the flood-
plain, albeit for a different model configuration. We resampled the
MERIT DEM to 500 m using bicubic interpolation. We used a hole-
filling process to ensure that there were no troughs that acted as sinks in
the DEM. All the channel banks in the floodplain were smoothed using a
moving average filter using a window of 7 × 7 cells. This was done to
ensure that the river channel did not have sudden changes in the ter-
rain.

3.3.2. Sub-grid parametrization of river channels, fish canals and
depressions

Similar to the Bara model, the river channels were represented as
sub-grid elements. In LISFLOOD-FP, the locations of sub-grid channels
are defined as regions. Each river channel was defined as a unique re-
gion; the Logone River was divided into two regions, approximately
upstream and downstream of Logone Gana. Values for the different
parameters (parameters controlling the depth of the channel given
width, channel type and Manning’s roughness coefficient) were defined
for each region. For the model, we assumed that the channel was clean,
straight with no rifts, and rectangular in shape, and used a Manning's n
of 0.025 s/m1/3 (Chow, 1959).

The width of all the channels were estimated from high resolution
satellite imagery of the floodplain. The width of the Logone river
ranged between 100 m and 400 m. All other channels had widths less
than 100 m. The details of the calibration for river widths is given in
Section 3.3.4.

In the Logone model, the fish canals were represented as sub-grid
elements, similar to the representation in the 500 m Bara model. The
widths of the fish canals were obtained from field data collected in
2013. The field data collection included the length of each canal in the
Logone Floodplain, the width, depth and elevation at the start (de-
pression) and end (river) of each fish canal. The dataset has information
for 1286 fish canals. The mean length of a fish canal was 809 m, and the
median length was 533 m. This meant that most fish canals were
contained in 1–2 pixels (of 500 m resolution). Since it is not possible to
define the slope obtained from the field data in one or two pixels, and
most of the canals are not longer than two pixels, we used a constant
depth to define its geometry. The mean depth of the fish canals was
derived from the field data, and all fish canals were assumed to have a
constant bankfull depth of 0.8 m. The fish canals were represented as a
unique sub-grid region with Manning’s n value of 0.025 s/m1/3, similar
to the river channels.

As in the 500 m Bara model, the depressions were also represented
as sub-grid elements in the Logone model. The location and area of the
depressions were obtained by depression mapping using satellite ima-
gery. Supervised maximum-likelihood classification was performed on
the cloud free imagery from the thermal infrared band of Landsat 5
(1986–87) and Landsat 7 (2000–03) during the dry season. We only
considered the 48 depressions that had canals draining into them. In
consultation with the field experts, we assumed that all the depressions
had a constant depth of 1 m. The fishnet was represented as defined in
the Bara model. The parameters of the fishnet were retained from the
calibrated Bara model.

3.3.3. Boundary conditions
In situ measurement of daily discharges were available at Katoa,

Bongor and Logone Gana. Katoa is located at the upstream part of our
study area, and the discharge measurements available here were used
to define the upstream boundary condition. Bongor is located ~60-km
upstream of Katoa, which is not included in the model domain. Previous
studies suggest that the difference in discharge between Bongor and
Katoa is due to overbank flow from the Logone that flows from south to
north along the Chadian side of the Logone River (Naah, 1990; Seeber,
2013). To account for this flow on the Chadian side of the floodplain, as
in Fernández et al. (2016), we assumed an additional flow on the east
side of the Logone River as the difference in discharge between Bongor
and Katoa in our model domain. Logone Gana is located in the domain
of the model, downstream of Katoa. We used the discharge time series
at Katoa and Bongor as the boundary conditions. We assumed a spin-up
time of three months (May to July 2001) and considered the model
predictions starting August 1st, 2001.

We did not provide a precipitation input for the model because
flooding in the Logone Floodplain is dominated from overbank flow.
We assumed that all the precipitation on the floodplain is either in-
filtrated or evaporated, and has no impact on the flooding (Fernández
et al., 2018, 2016). Evaporation rates are high and we used monthly
evaporation values from Naah (1990).

3.3.4. Calibration of the Logone model
Fernández et al. (2016) showed that even though the model cap-

tured the flow in the river channel, and hence channel to floodplain
flow accurately, flood inundation maps produced from the model had
spatial disagreement with observations. This disagreement can be at-
tributed to error in topography, as it is the major remaining unknown.
Mason et al. (2016) and Shastry and Durand (2019) both use different
methods to modify topography for improving flood simulations. Here,
we manually calibrated the MERIT DEM such that LISFLOOD-FP pro-
duced inundation maps that were more accurate. In the process of ca-
libration, the DEM pixel elevations were altered such that water was
forced to flow to the areas that were classified as inundated in the
Landsat imagery. In other words, the pixel elevations of areas predicted
by LISFLOOD-FP to be dry were reduced if the Landsat images classified
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them to be inundated, and vice versa. Flood inundation maps obtained
from classified Landsat images (Fernández et al., 2016) in 2006 were
used for this calibration.

Leopold and Maddock (1953) derived empirical relationships be-
tween river width, depth, discharge and catchment area based on ex-
tensive field measurements in over 100 river locations in the United
States. These relationships have been used for multiple rivers in many
previous studies since (Annis et al., 2019; Blöschl and Sivapalan, 1995;
Camporese et al., 2010; Finnegan et al., 2005; Flint, 1974; Frasson
et al., 2019; Gippel and Stewardson, 1998; Kim et al., 2019; Magilligan,
1992; Park, 1977; Pinter and Heine, 2005; Schumm, 1956; Tarboton
et al., 1991; Whipple and Tucker, 1999; Yamazaki et al., 2011). This
same geometric theory is used in the sub-grid formulation of LISFL-
OOD-FP (Neal et al., 2012), as this relationship can be used to estimate
river geometry (Eq. (3)) in data-scarce areas where bathymetry data
doesn’t exist (Fernández et al., 2016; Lewis et al., 2013; Schumann
et al., 2014a, 2014b). Fernández et al. (2016) calculated the depth of
the Logone by estimating r and p as parameters obtained by fitting a
curve to the channel cross-sections data from (Evans, 1999). The depth
of the channel was defined as

= ×Depth r Widthp (3)

To limit model complexity, we used a constant depth for each un-
ique channel region. The Logone River was divided into two regions
(approximately upstream and downstream of Logone-Gana), and all
other river channels were defined as independent regions. The mean
value of depths for the two Logone regions obtained from Fernández
et al. (2016) were used. The upstream Logone channel depth was in-
creased from its initial value (4.1 m) to 4.3 m to curtail overbank
flooding in some regions. All other channels were calibrated to have a
linear relationship with the width (p = 1), with r ranging from 0.03 to
0.12 (resulting depth values ranged from 2 m to 3 m).

We calibrated the value of Manning’s n such that the simulated flow
of water on the floodplain matched the observations from classified
Landsat imagery. Since depressions and floodplain were known to have
dense vegetation in them while flooded, we started with a Manning’s
coefficient of 0.1 s/m1/3 (Chow, 1959). However, with that n, the flood
receded quickly, and the floodplain was dry much before the observa-
tions suggested. We increased the roughness coefficient for the flood-
plain to 0.3, and the depressions to 0.25 so that the floodplain retained
water for longer.

3.3.5. Evaluation of the Logone model
3.3.5.1. River flow. We used the discharge measurements at Logone
Gana to compare and evaluate the performance of the Logone model.
The accuracy of the simulation was evaluated by using the Nash-
Sutcliffe Efficiency (Nash and Sutcliffe, 1970). Nash-Sutcliffe Efficiency
(NSE) is defined as (Eq. (4)):
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where O refers to the observations and M refers to model predictions.

3.3.5.2. Inundation area. We used 40 flood inundation maps from
multi-temporal Landsat ETM + imagery between 2001 and 2007 to
assess the performance of the Logone model in producing flood
inundation extents. We used 13 flood inundation maps in 2006
(January to December) for manual calibration of the DEM, and the
rest to evaluate the performance of the model. In the simulation period
between 2001 and 2007, we consider 2006 as calibration period and
2001–2005 and 2007 as evaluation period. We chose 2006 for
calibration because we had images in the dry season, the flooding
season and the flood recession season. Landsat images of the floodplain
between July to September, when the floods start, that are clear of
cloud cover are rare and limited the data we could use for this period.

To produce flood inundation maps from the Landsat images, the
following process was performed. First, the missing data in the images
from Landsat 7 images due to the failure of the Scan Line Corrector
(SLC) instrument on-board was handled by using a gap-filling method.
The method involved filling the no-data pixels in Landsat ETM + SLC-
off images with the linear least square regression analysis of their SLC-
on counterparts (Fernández et al., 2016). Landsat 7 SLC-on image on 21
October 2001 was used in a Iterative Self-organizing Data Analysis
(ISODATA) classifier to extract and mask out open waters on Lake Maga
and the Logone River. Clouded areas and cloud-shadowed areas were
masked by a 3 × 3 window size majority analysis where blue re-
flectance is greater than 0.2 (Fernández et al., 2016; Sakamoto et al.,
2007). Flood extents were delineated by using a threshold-based clas-
sification of the short-wave infrared (SWIR) band (Landsat
ETM + band 7) similar to Fernández et al. (2016) and Westra and De
Wulf (2009).

We compared the model predicted flood inundation maps with the
satellite observed flood inundation to asses the spatial performance of
the model. We used two commonly used evaluation measures: critical
success index (CSI) and hit rate (Aronica et al., 2002; Hawker et al.,
2018; Sampson et al., 2015; Schaefer, 1990; Schumann et al., 2016).
When flood predictions are compared with observations, we have four
classes: True Positive (TP; flooded predicted as flooded, or hit), True
Negative (TN; non flooded predicted as non flooded), False Positive (FP;
non flooded predicted as flooded, or false alarm) and False Negative
(FN; flooded predicted as non flooded, or miss). CSI is a measure of
accuracy when TN is not considered (Eq. (5)). It is sensitive to hits while
penalizing both misses and false alarms.

=
+ +

CSI TP
TP FP FN (5)

CSI values range from 0 to 1 where a value of 1 indicates that the
model is in full agreement with the observations. The hit rate gives the
fraction of flooded area that is correctly predicted by the model (Eq.
(6)). The values range from 0 to 1; higher value indicates that the model
predicts flood inundation better.

=
+

Hit rate TP
TP FN (6)

We calculated the evaluation statistics only for the flooding season.
For this purpose, we consider September to January as the flooded
season and February to August as the dry season.

3.3.6. Comparison with a “no canal” simulation
We compared two scenarios, one with and one without canals, and

examined what effect canals had on flood dynamics in the depressions.
To understand the role of canals on the floodplain, we simulated the
Logone model without any canals. All the parameters were kept the
same, except for the canals. This “no-canal” simulation was then com-
pared with the original simulation with canals in terms of flood in-
undation area, flood volume and timing of flood recession in the de-
pressions.

4. Results and discussion

4.1. Bara: Comparison of model simulations and field observations

The field data collected in 2014 showed there was a difference be-
tween the rate of recession in the river and the other parts of the
system. The river stage reduced by ~1 m while the water levels in the
floodplain, depression and fish canals reduced only by ~0.4 m in the
two weeks of observations during flood recession. The fishnet structure
in the model was used to capture this dynamic of the system. Fig. 5
shows the recession rates in all the features of the floodplain for the
collected field data as well as the model. The plot shows the depth
anomaly with respect to water level on day one of measurement. The
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slower recession rates in the floodplain, depression and fish canal
compared to that in the river channel is evident. Table 1 shows the
difference in water depth in the different features of the floodplain
between day 1 and day 15 of the measurements. The corresponding
model simulated change in water depth, and the NSE of simulated time
series are also shown. It shows that the water drops a little slower in the
model initially, but achieves the observed water level drop by the end
of the measurement period. The different recession rate of the river
from the other features was effectively captured in the coarse resolution
model as well (Fig. 5(b)). The water depth difference in the observa-
tions and model, and their corresponding NSE is shown in Table 1 for
the various features of the floodplain. The range of NSE is from 0.56 to
0.88, which shows that the performance of the coarse resolution model
is similar to that of the fine resolution model (NSE range 0.61–0.93),
and has managed to capture the floodplain dynamics in the coarse re-
solution model. The use of 500 m resolution model to study the entire
floodplain is justified by this result that the 500 m model when run at
Bara still reproduces the water levels observed in the field, with a

similar precision as the 30 m model.
In the floodplain, fishnet installed in fish canals have an obstruction

made from sandbags and a screen made from twigs and tree branches
which slows down the flow of water from the fish canal to the river. The
fishnet structure we incorporated in the model successfully captured
this by creating a drop across the fishnet. Fig. 6 shows the water drop
across the fishnet on three days during the flood recession. It shows that
there is a considerable drop caused by the fishnet as the flood recession
progresses.

4.2. Logone floodplain

4.2.1. Flow, mass balance
The Logone Floodplain receives water from the Logone River and

loses most water due to evaporation. Fig. 7 shows the modeled mean
mass balance for the six-year study period. The mean volume difference
between the input and output flows in the model is 0.79%. We assumed
that all the precipitation on the floodplain either infiltrated or evapo-
rated, and ignored its effect. Fig. 7 does not show evaporation as a
major flux; however, if we consider the modeled evaporation along
with the precipitation that has evaporated, it becomes a major flux on
the floodplain

We studied the dynamics of components of water balance by
looking at the entire time series of discharge and evaporation. The
model inflow and outflow for the entire time series are shown in
Fig. 8(a), the calibration period in the time series is shaded in gray.
There is a noticeable lag between the peak inflow and outflow dis-
charges, with a mean of 29 days and a standard deviation of 10.39 days
as the water has to traverse over 200 km along the river between the
inflow and outflow locations. The evaporation in the floodplain is
shown in Fig. 8(b). The peak evaporation occurs around November,

Fig. 5. Comparison of simulated and observed water level drop for Bara in (a) 30 m model and (b) 500 m model. Measurements were not available between 13-
November and 16-November 2014.

Table 1
Observed and Simulated Difference between November-8-2014 and November-
22-2014 Water Levels in Various Floodplain Features at Bara. NSE gives the
Nash-Sutcliffe Efficiency of the Simulated Water Level Difference w.r.t
Observed for the 15-day Period.

Feature Measured (m) Fine Resolution Model
(30 m)

Coarse Resolution Model
(500 m)

Simulated (m) NSE Simulated (m) NSE

River 1.12 1.28 0.93 0.95 0.88
Fish canal 0.44 0.34 0.61 0.43 0.69
Depression 0.41 0.35 0.80 0.38 0.84
Floodplain 0.41 0.36 0.83 0.28 0.56
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corresponding to when there is a peak flood. In the summer months,
even though potential evapotranspiration is very high, actual evapo-
transpiration is quite low as water in confined to the river channels and
Lake Maga.

Fig. 9 shows the time series of observed and simulated discharge at
Logone Gana. There was no recorded discharge between June 2nd and
October 30th 2006. The model accurately simulated the discharge at
Logone-Gana. The difference between modeled and observed discharge
was less than 100 m3/s more than 85% of the time. However, it should
be noted that peak discharge is generally under-estimated in the model
at Logone Gana. The NSE of discharge prediction at Logone Gana was
0.94. The accurate prediction of discharge at Logone Gana means that
the model also accurately predicted the amount of water on the
floodplain between Katoa and Logone Gana.

4.2.2. Flood inundation
We compared the model predicted inundation maps to those derived

from satellite observations. Over the entire model domain, the com-
parison between observed and simulated inundated area is shown in
Fig. 10. The gray area shows the calibration period, meaning the

Landsat-derived flood maps obtained during this time period was used
for the manual calibration of the DEM. The observed and simulated
inundated area had a Pearson correlation coefficient (r) of 0.94, and
coefficient of determination (R2) of 0.81. The model does not capture
the peak in 2001, 2002 and 2005, but it captures the receding in-
undated area accurately.

The accurate prediction of flow at Logone Gana (shown in Fig. 9)
means that the model also accurately predicts the channel to floodplain
flow due to overbank flooding. This result is reinforced in Fig. 10,
where the model again accurately predicts the magnitude of inundated
area. Comparison between observed and simulated patterns of flood
inundation is shown in Fig. 11(a) to (f) shows the flood inundation
patterns during the flooded season of the calibration period of 2006. It
shows that the model captures the flood inundation pattern quite well.
The spatial mismatch is primarily due to the quality of topographic
data, and justifies the use of manual calibration to adjust the DEM.
Although manual calibration of the DEM improved the spatial perfor-
mance of the model, there is still room for improvement. Recent
methods like Mason et al. (2016) and Shastry and Durand (2019) could
potentially be used to improve the DEM, and hence spatial performance

Fig. 6. Water drop across the fishnet during flood recession.

Fig. 7. Mean annual mass balance across the model domain between 2001 and 2007. Dark gray is water entering the model domain and light gray is water exiting the
model domains.
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of the model.
The spatial patterns in two December maps (Fig. 11(e) and (f)) show

that the movement of flood wave in the model is quicker than observed
along the West side of the Logone River, and much slower on the East
side. This could be because of difference in vegetation between the two
regions during the flooded season. We use a constant high value of
Manning’s coefficient for the entire floodplain to account for vegetation
on the West side of the Logone River. On the East side of the Logone
River, the model holds on to the water for longer because of this.
However, the conclusions of this paper regarding the depressions and
fish canals on the West side are not affected by this. Fig. 11(g) to (l)
show the flood inundation patterns on the days of peak flood from sa-
tellite imagery between 2001 and 2005. The observed peak flooded
imagery occurs in the months of October and November. There are two
available satellite images during this period in 2005, and both are
shown.

We analyzed the spatial accuracy of predicted flood inundation
maps by comparing them to satellite derived observations. Table 2

shows CSI and hit rate values for calibration and validation periods. The
mean CSI during calibration and validation was 0.33 and 0.25 respec-
tively, and the mean hit rate during calibration was 0.46, and during
validation was 0.32. The mean values are lower due to the fact that
flood recession in the model is much quicker than observed; this can be
clearly seen in Fig. 11(e) and (f). However, the model captures the peak
flood inundation pretty well. In 2006, the peak inundation is captured
with a hit rate of 0.71. During the evaluation period, the maximum hit
rate is 0.67 during the peak of 1-November 2005. It should be noted
that the model does not capture the peaks in terms of discharge (Fig. 9)
and magnitude of inundated area (Fig. 10), and these peaks may be
captured if the spatial prediction capability at the peaks could be fur-
ther improved.

4.2.3. Impact of fishnets and fish canals on water storage in depressions
The effect of the fishnet structure on the flow in the fish canal in

Bara depression in the large-scale Logone model is shown in Fig. 12. It
shows the water surface elevation along the length of the fish canal on

Fig. 8. (a) Inflow and outflow discharge time series in the Logone River at inlet and outlet of the model domain (b) Evaporation time series from the model for the
model domain.

Fig. 9. Time series of discharge at Logone Gana. Observations were obtained from the in situ streamflow gage, data was not available between 2-June-2006 and 30-
Oct-2006s.
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three days during the flood recession. The water drop across the fishnet
structure is clearly seen. The fishnet structure slows down the flow of
water from the fish canal to the river, and the model is able to capture
this effectively.

Fig. 13 shows timeseries of water storage in depressions from two
model simulations, with and without including fish canals. Fig. 13 also

shows the total inundated area within all depressions, based on the
Landsat inundated area maps. While both model simulations over-
estimate the duration of inundation, the simulation including canals is
most likely closer to reality. For example, in 2006, for the simulation
including canals, by December 3 the total depression storage was
763 ha-m, around half the maximum value (1542 ha-m, on October 14).

Fig. 10. Flood inundation time series for the Logone Floodplain. Shaded area represents the calibration period.

Fig. 11. Spatial pattern of flooding from observations and simulation. First two rows show flood recession during calibration period. Final two rows are annual peak
floods during evaluation period.
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The simulation that neglects canals does not reach the half-maximum
value until more than a month later, on January 12, 2007. The Landsat
observation on November 20 almost perfectly captured the halfway
point of the depression inundation (5.8 km2, down from 12.2 km2 on
October 3). The observations reach the halfway point around the same
time as the simulation including canals; the simulation without canals
retains its water too long. Indeed, the Landsat observation on January
7, 2007 shows that the depressions were essentially dry (< 0.1 km2),
when the simulation without canals is still half full. Similar dynamics
exist for the other years; the date depressions are empty is an average of
~29 ± 2 days earlier in simulations that include canals (see Fig. 13).
Thus, simulations including fish canals more closely represents the
correct inundation dynamics within the depressions. Duration of in-
undation in the depressions is a critical variable for floodplain fisheries,
as the duration of inundation in depressions governs fish growth. The
quicker recession in depressions, as noticed in model simulations and
confirmed by observations, shortens the growing season for fish, re-
sulting in lower fish biomass at the time of recession when most of the
fishing occurs.

5. Conclusions

The goal of the study was to evaluate the strategy of using a hy-
drodynamic model with sub-grid scale channels and structures to re-
present small-scale anthropogenic controls on floodplain dewatering at
the scale of the entire Logone Floodplain. This was accomplished using
the LISFLOOD-FP model applied to the Logone Floodplain in Cameroon.
We built a fine resolution model (30 m) of one depression (Bara) with
fish canals and fishnets, which were successful in approximating the
physical processes on the floodplain. We reproduced the change in
water levels across all features (floodplain, depression, fish canals and
river channel) as observed during two weeks of flood recession. We
upscaled this model to a larger resolution of 500 m and found that, with
the help of sub-grid parametrization of fish canals and depressions, we

were still able to successfully capture the processes on the floodplain. It
is noteworthy that a 500 m resolution hydrodynamic model was cap-
able of accurately representing small-scale features like fish canals that
are a few meters wide, and fishnets constructed across these fish canals.
We applied this strategy of representing fish canals and depressions as
sub-grid features to the entire floodplain to assess their impact on the
flow patterns. We found that fish canals are critical for modeling in-
undation timing in the depressions: model simulations excluding canals
emptied around a month too late, compared to satellite observations,
with important implications for using such models to inform fish
growth and population. Fishing is a major source of income in the
Logone Floodplain, and lower fish catches would have a huge impact on
the local economy. These modeling strategies enable us to quantify
small-scale processes in a computationally efficient model. These
models can be coupled with fisheries model (like described in
Welcomme and Hagborg (1977)), to study the impacts of these small-
scale features on floodplain fisheries.
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Evaluation Statistics for Modeled Flood Inundation Prediction Compared to Satellite Imagery for the Calibration and Evaluation Period.

Calibration Period Evaluation Period
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Critical Success Index (CSI) 0.15 0.54 0.33 0.16 0 0.63 0.25 0.22
Hit Rate 0.24 0.71 0.46 0.19 0 0.67 0.29 0.24

Fig. 12. Water drop across the fishnet at Bara in the Logone model.
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